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Abstract. We consider detection accuracy in agricultural contexts. Five
challenging datasets were collected and benchmarked, with three recent
networks tested. Based on an initial analysis showing the importance
of image resolution, models were trained and tested with a multiple-
resolution procedure. Detection results were compared to human per-
formance, judged based on the consistency of multiple annotators. A
quantitative analysis was made highlighting the role of object scale and
occlusion as detection failure causes. Finally, novel detection accuracy
metrics were suggested based on the needs of agriculture tasks, and used
in detector performance evaluation.

Keywords: Detection, Precision agriculture, Human performance

1 Introduction

Object detection in the agriculture environment is important for a variety of
agricultural tasks and applications such as robotic manipulation, counting, and
fine phenotyping. Robotic manipulation tasks as fruit [20] and vegetable [25]
harvesting were recognized as an important task to automate more than 50
years ago [21]. Other robotic tasks requiring a detection module include plant
spraying [3] and detection and handling of pests and diseases [7]. Counting tasks
are common for the purpose of yield estimation [16, 26], or blooming intensity
estimation [6], and at least in some approaches require explicit object detection.
Fine phenotyping tasks involve examining an object’s traits and features to eval-
uate a plant’s growth, resistance, physiology condition, or any other observable
parameter [4]. For example, in [1, 24] various length or height parameters of
plant parts were estimated. A successful object detector is crucial for achieving
practical performance in each of the above tasks.

Detecting objects in field or orchard conditions is not an easy task. In 2001 it
was recognized by Li et al. [12] that improvements in detection and localization
of objects are the main obstacles preventing harvesting robots from reaching hu-
man capabilities. In recent years, Convolutional Neural Networks (CNNs) based
detectors dramatically improved, bridging some of the gap between human and
machine performance. CNNs based detectors can be divided into two natural
groups - single stage and two stage detectors. Single stage detectors, such as
YOLO [17], RetinaNet [14], and EfficientDet [23], consider hundreds of thou-
sands of possible object locations in the image, and classify them in a single
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Challenges for visual detection in the agricultural context. (a) severe occlusion
and scale variations (b) dozens of avocado objects in a single image (c) severe occlusion
(d) scale variation (e) poor illumination (f) challenging discrimination. Image (b) shows
a full image, and the others are sub-images showing the difficulties

unified network. Two stage detectors, such as Faster-RCNN [18] or Mask R-
CNN [9], start by generating a smaller set of object candidates (a few hundreds
or thousands), then classify and refine them in a second network.

Detection in the field context is different in some characteristics from tradi-
tional detection benchmarks [5, 15] and in some respects more challenging. First,
field images may contain dozens of objects, with high scale variance. Naturally
both near and far objects are captured, and objects in many octaves often exist
in a single image. Second, in many cases, such as apple flowers or tomatoes, the
objects of interest grow in clusters. Hence occlusion is very common, with many
objects suffering from high occlusion degrees. Third, the objects of interest often
have a challenging shape with similarity to background structures. Tomatoes
and avocados for example, are simple and round without discriminative details,
and can often be confused with round leafs in the foliage. Cucumbers are green
and stick-like, with high similarity to some branches and stalks. Tomato whole
plants, on the other hand, are non-convex and skeletal. Finally, there are chal-
lenges introduced by the outdoors illumination conditions, including coping with
severe cast shadows and required invariance to capturing hour. Some of these
difficulties can be observed in figure 1.

With the rapid advance of detection networks, several questions arise with
respect to the agricultural context: What are the better network architectures
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and training procedures for the agricultural domains? With the best models,
is fruit and plant detection now approaching human level? If there is still a
gap, can we characterize the main reasons for detection errors and quantify
them? finally, assuming human level has not been reached yet: is the accuracy of
current detectors satisfactory for practical applications? Which measurements
may help us in answering this question? In this paper we try to make some
progress regarding these issues.

In order to characterize detection performance we collected images from five
different agricultural contexts, in which the tasks are detection of tomatoes,
cucumbers, avocados, banana bunches, and whole tomato plants. These repre-
sent a diverse set of challenges related to non-discriminative shape (cucumbers),
non-convex shape (whole plants), natural clustering and occlusion (tomatoes).
Datasets were annotated with strict annotation, aiming to include all objects
visible by a human (including small and highly occluded ones). To obtain good
detectors, we have experimented with two main dimensions. First, we tested
three leading network architectures: the two staged Mask R-CNN [9], the single-
stage RetinaNet [14], and the recent EfficientDet [23]. More importantly, we
conducted an analysis showing that accuracy is highly affected by object scales
and processing resolutions. In light of that realization we have experimented
with training and inference procedures involving multiple image resolutions.

The best detectors obtained were analysed in two informative respects: first,
accuracy was compared to estimated human accuracy (on 4 of the 5 datasets
where the required annotation existed). To estimate human accuracy, annota-
tions of the same dataset made by 2 or 3 different annotators were used. Human
performance was estimated based on the consistency between annotators, with
one annotator operating in the ‘predictor’ role and the other as the ‘ground
truth’. A second analysis was pursued to quantify the role of object scale and
occlusion in detection difficulty. To this end, additional occlusion annotation was
added to the most challenging dataset in this respect, the tomato dataset. De-
tection accuracy was then measured for subsets of objects characterized by their
size and occlusion level, and compared to the corresponding human performance.

The suitability of a certain detector to a certain application is clearly an
application-dependent question, which cannot be answered here. However, we
claim that in order to answer such questions, detector accuracy should be char-
acterized with a richer set of measurements than the commonly used Average
Precision (AP) or F1 statistic. In robotic interaction, for example, object local-
ization accuracy is most important. For phenotyping one usually does not have
to detect all the objects [24], but measurements should not be made on non-
objects. Hence recall at high precision levels is the most relevant. For counting,
we claim that counting error for a certain confidence threshold is the suitable
performance indicator. We suggest a set of accuracy measurements tailored to
agriculture applications and measure the best detectors trained.

Our contribution in this work is four-fold. We report a benchmark of several
recent detector architectures on a diverse dataset of five agricultural detection
tasks. We analyze the effect of object scale on detection accuracy and show
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the importance of multiple resolution network processing for tasks containing a
wide scale range. We analyze the performance of the best detectors with respect
to error source and with comparison to human level performance. Finally, we
suggest a set of detection accuracy measurements more tailored to common
agricultural tasks, and use these to measure the best detectors trained.

2 Related Work

Object detection in agriculture is an extensively studied subject, with the out-
door field environment presenting unique challenges. In [8] variable lighting con-
dition, occlusions, and fruit or flower clustering were mentioned as the main
difficulties. Other works [2, 6] have acknowledged and faced the challenges of
having many objects with small scale. Most early published work was based on
explicit formation of color, texture or geometric features enabling detection of
the target objects. The review [8] published in 2015, provides a good overview
of these techniques. With the advance of CNN models in recent years, they
were found a good fit to cope with the challenges, and avoid the manual feature
construction. Given enough data, deep networks learn a good representation in-
cluding discriminating features, which enable detection of target objects with
accuracy superior to previous methods. A review of deep learning techniques
in agriculture, including some examples of successful detection applications is
presented in [11].

While there are numerous studies that use a deep learning based detector
in agricultural tasks, we focus here on the benchmarks [19, 27, 2], which are the
most relevant to our work. Sa and his collaborators [19] use Faster R-CNN [18]
to detect sweet peppers and rock-melons by combining RGB and Near-IR in-
formation. Specifically, the two modalities were combined by adding the NIR
map to the network input, and this addition is shown to contribute to accuracy
(rising the F1 score from 0.813 to 0.838). The work shows the generality of the
approach by considering 7 different fruit kinds, and the F1 results obtained are
very good. However, the datasets used are significantly easier than in our work.
Images are mostly taken in plantation conditions, with small distance between
the camera and the relevant fruits. Hence typically an image includes less than
5 fruits (rarely more than 10), and these are usually big and clearly visible. In
contrast, the images used in our experiments often contain many dozens of ob-
jects, and with significant scale variation including many small and far objects.
In [27] a large dataset, containing 49, 000 annotated objects from 31 classes was
collected and benchmarked for detection and classification with deep networks.
However, this data is even more extreme than the datasets of [19], with most
images containing a single large object of interest.

Bargoti and Underwood [2] used Faster R-CNN to detect mangoes, apples,
and almonds. Their dataset is similar to ours with respect to the image size and
the number of objects in each frame. To resolve scale and number of objects issues
they also use a tiling system - image was divided into tiles of 500×500 pixels with
50 pixels overlap. While this work is the most similar to ours, our benchmark
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Table 1. Data set sizes and partitions shown as (# images, #objects),image sizes, and
object size statistics. Object size is in pixels, defined by

√
width× height. The table

shows mean object size and std(log(size)) with log base 2 in parenthesis

Crop Train set Validation Test set Image size object size

Banana (133, 642) (28, 128) (28, 134) 3024× 4032 461(1.24)
Cucumber (21, 457) (3, 75) (4, 118) 6000× 4000 279(1.07)
Avocado (17, 613) (2, 110) (5, 143) 3024× 4032 126(0.59)
Tomato (22, 572) (3, 107) (6, 173) 5184× 3456 227(0.94)
Tomato whole plant (30, 223) (7, 82) (10, 198) 6000× 4000 963(0.89)

work is wider in scope. Specifically it includes comparison of several (newer)
networks, a comparison to human performance, detailed analysis of the main
error causes: occlusion and scale, and consideration of performance measurement
beyond the general F1 or AP statistics.

3 Method

The datasets used in this work are briefly presented in 3.1, followed by a short
description of the networks used in 3.2. In Section 3.3 image resolution and detec-
tion with multiple scales are described. Section 3.4 describes human performance
estimation and 3.5 discusses agriculture-related performance measurements.

3.1 Datasets

Datasets were collected and annotated for five different crops: banana bunches,
cucumbers, avocados, tomato fruits, and tomato plants. Images sizes differ be-
tween datsets in the range of 12-24 mega pixel. The number of objects per frame
varies between 4 up to 72 objects. For detailed information on the number of
objects and image sizes see table 1. As seen in figure 1, the images include large
scale and occlusion variation, with some of the dataset (tomato, cucumber, av-
ocado), dominated by the large amount of far and small objects. The challenge
in shape and color varies between dataset: cucumbers are often small and hard
to differentiate from branches. Tomatoes change color before harvesting, but the
majority of the tomatoes in our data are unripe and therefore green and blend-
ing in with the green background of the foliage. Tomato whole plants have an
irregular non-convex shape making it harder to demarcate one from the other.

3.2 Detection models

We tested three state-of-the-art detection algorithms: Mask R-CNN [9], Reti-
naNet [14], and EfficientDet [23]. While there are significant differences, all
these networks share a common general structure. First, a pre-trained classifica-
tion network, termed the ’backbone’ network, is applied in a fully-convolutional
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manner to produce a dense representation for the entire image. At a second
stage a variant of Feature Pyramid Network (FPN) [13] is applied. It creates
tensors of similar representation but different resolutions, representing the im-
age in multiple octaves to enable multiple scale detection. The model then tests
for object existence in a pre-defined set of (position, scale) candidate rectangles
termed ’anchors’, which typically contains hundreds-of-thousands of candidates.
The candidates, or a filtered subset of them, are then passed to processing by
several parallel ’head’ modules. A classification head is trained to classify candi-
dates among non-objects and classes of interest. A second ’bounding-box refining’
head is trained to refine the proposed rectangle, in case it contains an object, to
a tighter rectangle with better fit to the object extent.

Mask R-CNN [9], has evolved as an improved variant of Faster R-CNN [18]
with optional object segmentation capabilities. This is a two-stage model: the
first stage, termed a Region Proposal Network (RPN) [18], filters from the pos-
sible anchors a few hundreds/thousands for further processing. It uses a ResNet-
50 [10] backbone network to produce the initial representation, and the FPN, to
create the multi-scale pyramid representation. An object/non-object initial clas-
sification is made for each anchor for the filtering. While positive object proposal
are carefully chosen, negative ’no object’ candidates (required for classification
training at the second stage), are chosen heuristically to balance the number
of positives. The object candidate regions are sampled from the representation
tensors using a sampling layer (RoI-Align) and sent to the second stage, which
includes the classification and bounding-box refining heads. There is no gradient
flow between the stages in training, and they are essentially trained separately.

RetinaNet [14] is similar to Mask R-CNN in its usage of ResNet-50 network
as backbone, and the FPN [13] for multiple scale representation. However, un-
like Mask R-CNN, this is a single stage network trained end-to-end. Instead of
filtering object candidates, all the hundreds-of-thousands anchors are considered
as candidates and go through the object classification and bounding box regres-
sion heads. While enabling end-to-end training, this creates a problem of class
imbalance, as classification is trained with hundreds of thousands of negative
examples (non object candidates) versus a few positive examples in each image.
The problem is addressed using a modification to the standard cross entropy loss
termed ’Focal Loss’, in which ’easy examples’, including most of the negatives,
are down-weighted in training. This mechanism channels the network learning
effort efficiently to the hard examples, both positive and negative.

EfficientDet [23] is a one-stage network similar to the RetinaNet, and like it
uses the focal-loss in training. However, it includes several improvements, and
was recently (2019) reported to achieve state-of-the-art results on the MS-COCO
detection challenge. The backbone used in this model is the B4-EfficientNet [22],
reported to have higher ImageNet accuracy than ResNet-50 while using only one
fifth of the parameters and running 10× faster. A second module in which signif-
icant changes were made is the FPN. EfficientDet uses a modified version termed
Bi-FPN, which includes top-down connections between consecutive resolutions,
and a weighting mechanism for fusion of information in these connections.
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3.3 Image resolution

The datasets’ images are typically very large (see table 1). The networks can-
not accept such resolutions due to GPU memory limitations, and are limited to
1024×1024 input size. In a simple treatment, each image is resized such that its
larger dimension is resized to 1024 pixels, keeping the aspect ratio, and padded
with zeros in the shorter dimension. This down-scaling clearly diminish the ob-
ject’s size by a significant factor. For example in the cucumber dataset the scale
factor is max( 6000

1024 ,
4000
1024 ) = 5.85, so each object’s size is 5.85X smaller and their

areas is 34X smaller than in the raw data.

We overcame this issue by working with images in two resolutions. Instead
of using only the down-sampled original image, a set of 1024× 1024 sub-images
covering the original image were cropped with a fixed overlap. Both the down
sampled original image and the cropped sub-images are used in network training
and inference. As will be discussed below, both resolutions are required, and
this two-resolution policy provides the detectors more opportunities to detect
an object either in the sub-images or in the resized original image. The detected
bounding boxes set of both resolutions are unified before Non Maxima Supression
(NMS). The overlap parameter was chosen using initial empirical tests with the
tomato datset and was set to 581 pixels. Note that with such overlap, which is
close to half the sub-image size, each object is typically seen in 4 sub-images and
one time in the single full-image, so the system has 5 opportunities to detect it.

An analysis of the effect of object scale on detection performance is presented
in figure 2. The detection bounding boxes of the Mask R-CNN model for the
tomato dataset were used to compute several statistics of interest. It turns out
object scale has a profound impact on detection performance. Larger objects are
more likely to be detected, have higher IoU (Intersection over Union) with the
correspond ground truth rectangles, and higher confidence scores. Specifically
detection probability arises linearly with object scale (measured logarithmically)
in a significant scale range. A particular statistic of interest in our system is the
’second chance’ probability: the probability to find an object in its larger scale
(the sub-images) given that its detection has failed in the down-scaled image.
Surprisingly, this probability is high not only for the small objects, but more for
medium size objects, where it gets to values in [0.4− 0.5].

Since there are many sub-images and only few full downscaled images (the
relation between them is 77:1 for the tomato datatset), the former dominate
the dataset statistics. This sometimes create a problem in training, since large
objects usually appear in the sub-images as partial objects. A very big object
is typically seen in the data once as a full object in the full image, and 4 times
as a partial object in sub-images. Upon training, This creates a tendency of
the models to detect large objects with multiple bounding box corresponding to
their parts, which is detrimental to performance. To avoid this tendency, we use
two means. First, an object is annotated in a sub-image only if at least 60% of it
is visible. Second, the full downscaled images are assigned a higher weight (8×
higher) in training, to enhance the importance of detecting whole objects.
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(a) (b) (c)

(d) (e) (f)

Fig. 2. The relation between object scale and detection quality. The graphs show empir-
ical analysis conducted on detected bounding boxes of a tomato Mask R-CNN model.
object scale is measured as

√
height · weight in logarithmic scale with base 2. (a)

Detection scale histogram. (b) Detection probability as a function of object scale. A
close-to-linear relation holds for a significant scale range. The linear approximation is
shown in red. (c) network detections’ confidence as a function of scale. The red line
shows the model based on (d). (d) log(1− confidence) as a function of scale. the red
line shows a linear model fitted. (e) IoU with object rectangle as a function of scale. It
rises, then saturates for large objects. (f) The probability for an object to be detected
in the sub-images given that it was not detected in the original down-scaled image

3.4 Analysis and human performance estimation

In a difficult detection task as presented here humans do not usually reach per-
fect performance. Specifically severe occlusion cases and small far objects can
be easily missed, and foliage’s texture creates false alarms. In addition, annota-
tors are different in their skills and capabilities. As a fact, different annotators
produce very different annotations when annotating the same dataset, as can
be seen in Table 2. While we do not know which annotator is better, human
performance can be measured by checking the degree of agreement between an-
notators. Specifically, we can define the task as predicting the annotations of a
specific human, and compare a network to other humans in this task.

A comparison between algorithms and humans is hence made by temporarily
setting one annotator as the Ground Truth (GT) annotator. The other human
annotators are considered ’detectors’, and are measured just like a detection al-
gorithm would. However, human annotators do not provide confidence score for
their annotations, so a recall-precision curve cannot be plotted for them and an
AP score cannot be computed. Instead they provide a single (recall, precision)
working point. While AP cannot be computed, an F1 score for the (recall, pre-
cision) point can be computed and compared to the best F1 score obtainable
by a competing algorithm. The competing algorithms are trained on mixed an-



360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

ECCV

#29
ECCV

#29

CVPPP-20 submission ID 29 9

notation by sampling randomly a single annotator per image at training. All
the non-GT annotators and the algorithms are evaluated and compared on the
same test set. Since no human annotator is a-priory preferable to the others, the
process is repeated for every human annotator at the GT annotator role.

Table 2. The number of annotations for each annotator and dataset. Tomato and
cucumber datasets were annotated by three annotators, banana and avocado by two

Data-set First annotator Second annotator Third annotator

Banana 118 139 —–
Cucumber 119 108 127
Avocado 143 141 —–
Tomato 212 215 149

A different analysis direction is to evaluate detector performance on object
subsets of interest. Specifically, we suggest to compute the recall precision curve
in six sub-categories of objects: all, small, big, occluded, non-occluded, big and
non-occluded. Such category breakdown can helps a lot in understanding the
model’s strengths and weaknesses. Moreover, it enables understanding of the
model capability to perform certain applications. For example, detector usage
as the first stage for phenotyping only required success for fully visible and
big objects where the phenotype can be measured. Such sub-category analysis
required additional annotation, and it was performed for a single dataset - the
tomato set. For size, a threshold between small and big objects was chosen at
100.5Kpixels based on manual inspection, keeping a portion of 24.55% as big
objects. Object occlusion was determined by manual annotation.

The recall precision curve for such a subset of interest cannot be measure
with standard recall and precision definitions. The reason is that the classifier
of interest was trained to detect all objects, not just the subset. If the set of
ground truth object is trimmed to a subset, for example of small objects only,
than detector hits on the complementary set (big) are considered false alarms,
leading to low and irrelevant precision rates. To avoid this, one has to keep using
the full object set in the false alarm definition. Formally, denote the full set of
ground truth rectangles by GT , and the subset of interest by S. A detection
rectangle D is now defined to be True Positive (TP) or False Negative (FN) by

D ∈ TP iff ∃R ∈ S s.t IoU(R,D) > 0.5 (1)

D ∈ FP iff ∼ ∃R ∈ GT s.t IoU(R,D) > 0.5

Hence the definition of TP has been narrowed to include only relevant objects,
but the definition of false alarm keeps the original object set on which the clas-
sifier was trained.

The suggested definition enables measuring recall precision curves for subsets
of interest, but it is not well suited when a single (True Positive Rate (TPR),
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False Positive Rate(FPR)) working point exist, as is the case with humans. Since
the FPR is fixed across subsets, small subsets (hence with low TPR) obtain low
precision P = TPR/(TPR + FPR) and hence low F1 scores. For comparison
with human on subsets, we hence look at recall rates (of the algorithm and the
human) at the same FPR, determined by the human working point.

3.5 Performance estimation for agriculture tasks

Detectors are commonly evaluated using the Average Precision (AP) score, which
measured the area under the recall-precision curve and provides a robust and
threshold-independent performance measure. However, for the task families com-
mon in agricultural applications this measure is too general, and more specific
additional measurements can be more informative.

Robotic applications typically require high localization accuracy, to enable
robotic interaction with the plant. Localization quality is not measured at all in
the standard AP measure. For a single successful detection, localization accu-
racy can be measured by considering the center pixel deviation, i.e the distance
between centers of detection and GT rectangles. This deviation is in pixel units,
and can be divided by the GT object scale to get the relative deviation, which is
a unit-less, more intuitive fraction. The relative deviation can be averaged over
all successful detections and provide the mean relative deviation.

Another requirement in some robotic applications is finding all the objects,
i.e. high recall, in order to perform the task for all of them (like harvesting or
overcoming noxious entities). While high recall have the cost of low precision,
most false alarms can be corrected by moving the robot closer to the object.
Practically, we can measure the recall at 0.1 precision as an estimate of this
’total recall’, measuring the fraction of relevant objects found by the detector.

In counting applications, the detector is typically applied with a certain
threshold and its output rectangles are counted. To measure performance, count
deviation from the true count is measured, and divided by the true count to get
the relative count error - the deviation as a fraction of the true count. The natural
threshold to use is the one without bias: the one for which the expected number
of false positives (non objects identified as objects) is equal to the amount of
false negatives (objects not identified). In that case, the counting error expec-
tation is zero. Hence we propose to use the average relative count error, of the
count estimates at the non biased threshold.

In Detection-based phenotyping, detectors are used as a first stage to enable
phenotype measurements(e.g. [1, 24]). The detector finds the objects, then an-
other model measures the desired feature. Typically the breeder is interested in
statistics of the feature across a field or plot, like average and std of cucumber
lengths [24] or spikelet count in a wheat spike. For estimation of such statistics,
the detector does not have to consider all objects: a small sample of ’measurable
objects’ is enough. However, false positives are harmful, as each FP detection
produces a ’noise’ measurement contaminating the statistics. Therefore an ap-
propriate detector measure will be the recall at 0.99 or 0.9 precision, where a
minimal number of FP occur.
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Table 3. Average Precision (AP) on the test set for each crop and network model

Data set Mask R-CNN RetinaNet EfficientDet

Banana 0.741 0.604 0.455
Cucumber 0.507 0.516 0.453
Avocado 0.801 0.774 0.714
Tomato 0.580 0.646 0.522
Tomato whole plant 0.718 0.703 0.443

4 Experimental Results

We start by comparing the results of the three tested models on the five datasets.
The best models are compared to human performance using F1 scores. We con-
tinue with analysis of the obtained AP using the break-down of performance into
object sub-categories. Finally, the additional agriculture-related performance
measurements are reported and discussed.

Networks results: Table 3 shows the results of the three tested networks,
trained with the dual-resolution approach. As can be seen, the comparison didn’t
yield a superior model, but Mask R-CNN and RetinaNet performed better than
EfficientDet over all crops. Mask R-CNN works better on the ‘easier’ (as indi-
cated by the obtained accuracy) datasets avocado, banana, and tomato whole
plant, and RetinaNet performed better for the more difficult cucumber and
tomato datasets. The results show similarity between the two leading models
indicate that accuracy is primarily a function of dataset difficulty, not of chosen
network. Surprisingly, scale variance, and not only mean scale, is a prominent
source of difficulty. The avocado data, despite having the smallest mean object
size was successfully handled, probably because is has low object size variance
(see table 1) and a rather fixed view point across images. Banana and tomato
whole plant, which are larger and do not suffer from high occlusion rates are of
medium difficulty. The most difficult are tomato and cucumber, which are small,
have high scale variance, and severe occlusion problems.

Comparison to human performance: Table 4 shows comparisons be-
tween the best trained models and a human detector, in terms of obtained F1

scores. For the networks, the (recall, precision) working point with the highest F1

score was chosen for comparison. The results show that for most tasks, a signifi-
cant gap still exist between human and network detection. For Banana bunches,
the network practically achieves human level detection: its agreement with hu-
man annotators is similar to the agreement between themselves. For Avocado,
the network achieves high detection rates, yet humans are approximately 10%
better. For the difficult tomato and cucumber data, significant gaps of 30− 40%
exist. The reasons for this bug gaps and analyzed next.

Error cause analysis: Recall-Precision graphs for object subsets of the
tomato dataset are shown in figure 4. Graphs are plotted for 6 subsets based on
occlusion (occluded/non occluded) and scale (small/big) binary variables defined
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(a) (b)

Fig. 3. Detection results examples: Red bounding-boxes are the detection results and
blue bounding-boxes represents the ground truth annotations. Additional examples can
be found in appendix 6

Table 4. F1 scores obtained for (data set, annotator) tasks, with the annotator index
defining the ground truth. The best model chosen based on the AP scores from table 3
is compared to the human annotators. The model type (Mask-R-CNN or RetinaNet)
is indicated by (R) or (M) in parenthesis. Duplicate figures for human F1 score are due
to the symmetry of using one annotator to estimate the other and vice-versa

Crop, annotator Model F1 Human F1 Human F1

Banana, 1st 0.826 (M) 0.794 —
Banana, 2nd 0.748 (M) 0.794 —
Cucumber, 1st 0.589 (R) 0.789 0.802
Cucumber, 2nd 0.543 (R) 0.789 0.791
Cucumber, 3rd 0.548 (R) 0.802 0.791
Avocado, 1st 0.801 (M) 0.894 —
Avocado, 2nd 0.824 (M) 0.894 —
Tomato, 1st 0.64 (R) 0.903 0.923
Tomato, 2nd 0.648 (R) 0.903 0.905
Tomato, 3rd 0.636 (R) 0.923 0.905

in section 3.4. The results clearly reveal scale and occlusion as the dominant
causes of detection errors, and quantify their impact. Specifically, Moving from
big to small objects causes 25% degradation in accuracy (from 0.797 AP to
0.6), and introducing occlusion degrades accuracy by 30% (from 0.82 to 0.578).
The detection accuracy is practically perfect for big non-occluded objects, where
these two causes of difficulty are gone. The latter result encourages the usage
of detectors to extract objects for secondary phenotyping measurements, where
only measurable un-occluded objects are of interest.

In table 5 accuracy of networks and humans is compared according to scale
and occlusion sub-categories. Occlusion and scale are the error causes of both
human and the network, but the degradation form is different and more severe
for the network. It can be seen that humans keep close to perfect performance as
long as the object is either big or non-occluded, so their errors arise when objects
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Fig. 4. Recall-Precision graphs of the RetinaNet tomato model on object subsets of
interest. Average Precision (AP) scores are stated in the titles. Similar graphs for the
other datasets, but only for big/small division, may be found in Appendix 2

are both small and occluded. The network significantly degrades and looses half
of the recall rate due to size and occlusion independently.

Agriculture-related performance measurements: The performance in-
dices from section 3.5 were measured for the best models. The results, presented
in table 6, give rise to several observations. For counting, relative deviation de-
pends not only on detector accuracy, but also on the typical number of objects
per image. With more objects per image, relative count deviation gets smaller
due to the law of large numbers. Hence better accuracy is obtained mainly for
datasets with high number of objects per image (see table 1), like cucumber and
avocado. For detection-based phenotyping, were a sample is required with min-
imal number of false alarms, the results indicate significant maturity of current
detectors. With 1% of false positives, the detectors can sample 13− 43% of the
objects, and if a noise of 10% false alarms can be tolerated most detectors can
retrieve more than half of the objects. For localization the results are encour-
aging, with relative deviation lower than 14% obtained for 3 of the 5 datasets.
However, since robotic applications require accuracy mainly for near (hence big)
objects, characterization of localization error as a function of scale is required.
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Table 5. Recall rates at specific False-Positive Rates (FPR) for network and humans on
tomato dataset. Each row considers a different object subset. Columns present results
obtained when different annotators are providing the ground truth. The average FPR
of the Non-GT annotators is stated in the columns title in parentheses. Recall rates of
the RetineNet model at the same FPR are reported in the ’Network’ columns. Rates
reported in ’Human’ columns are the average recall of the two non-GT annotators

Category Annotator 1 (16) Annotator 2 (17) Annotator 3 (15)

Network Human Network Human Network Human

Small 0.46 0.90 0.48 0.89 0.43 0.90
Big 0.79 0.98 0.77 0.98 0.85 1
Occluded 0.44 0.89 0.47 0.90 0.41 0.90
Non occluded 0.79 0.98 0.79 0.98 0.79 1
Big non-occluded 1 1 1 1 0.89 1

Table 6. Performance measurements suggested in section 3.5, measured for each crop
by the best model

Measurement Banana Cucumber Avocado Tomato Tomato plant

Count deviation 0.452 0.117 0.152 0.328 0.354
Recall@0.99 0.430 0.22 0.13 0.34 0.11
Recall@0.9 0.680 0.31 0.68 0.51 0.52
Recall@0.1 0.780 0.62 0.89 0.75 0.85
Localization dev. 0.341 0.221 0.133 0.139 0.184

5 Concluding remarks

The benchmark reveals that current detection networks are able to achieve hu-
man level accuracy for banana bunch detection, and get close to this level for
avocado. However in more difficult tasks significant gaps exist. The two dom-
inant causes of error were identified to be small object scale and occlusion.
Each of these variables causes performance degradation of 25− 30%, and when
these are removed detection is nearly perfect. The results were obtained with
relatively small samples and may clearly improve with data size, but they nev-
ertheless suggest clear directions for focusing work on detectors improvement.
The task-related performance measurement show high potential for counting
and detection-based phenotyping. For counting, 14% error were obtained for
several datasets, even without usage of further mechanisms common in counting
networks. For detection-based phenotyping current detectors were shown to be
mature enough, as they are able to provide representative samples with high
precision, and detect almost flawlessly big and un-occluded objects.
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6 Appendix 1 - Additional Detection results

(a) (b)

(c)

Fig. 5. Detection results examples: Red bounding-boxes are the detection results and
blue bounding-boxes represents the ground truth annotations
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7 Appendix 2 - Scale dependent Recall-Precision graphs

Cucumber dataset

Avocado dataset

Banana dataset

Tomato plant dataset

Fig. 6. Recall-Precision curves for subsets related to object scale difference. In each
row the left curve is drawn for all the test set, the center curve for small objects, and
the right one for big objects. Avocado scale threshold is different and smaller, since
using the default 100, 500 pixels threshold would mark all objects as small. It was hence
set to 20, 000[pixels]


